Nuprl Lemma : linearization-value
∀[L:ℤ List List]. ∀[p:iPolynomial()].
  ∀f:ℤ ⟶ ℤ
    (int_term_value(f;ipolynomial-term(p))
    = linearization(p;L) ⋅ map(λvs.accumulate (with value x and list item v):
                                    x * (f v)
                                   over list:
                                     vs
                                   with starting value:
                                    1);L)
    ∈ ℤ) 
  supposing (∀m∈p.(snd(m) ∈ L)) ∧ no_repeats(ℤ List;L)
Proof
Definitions occuring in Statement : 
linearization: linearization(p;L), 
ipolynomial-term: ipolynomial-term(p), 
iPolynomial: iPolynomial(), 
int_term_value: int_term_value(f;t), 
integer-dot-product: as ⋅ bs, 
l_all: (∀x∈L.P[x]), 
no_repeats: no_repeats(T;l), 
l_member: (x ∈ l), 
map: map(f;as), 
list_accum: list_accum, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi2: snd(t), 
all: ∀x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
multiply: n * m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
or: P ∨ Q, 
top: Top, 
cons: [a / b], 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
colength: colength(L), 
nil: [], 
it: ⋅, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
sq_stable: SqStable(P), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
linearization: linearization(p;L), 
ipolynomial-term: ipolynomial-term(p), 
int_term_value: int_term_value(f;t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
itermConstant: "const", 
int_term_ind: int_term_ind, 
iMonomial: iMonomial(), 
pi2: snd(t), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
bool: 𝔹, 
unit: Unit, 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
bor: p ∨bq, 
deq: EqDecider(T), 
int_nzero: ℤ-o, 
istype: istype(T), 
select: L[n], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
poly-coeff-of: poly-coeff-of(vs;p), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
nat_plus: ℕ+, 
decidable: Dec(P), 
l_all: (∀x∈L.P[x]), 
imonomial-less: imonomial-less(m1;m2), 
imonomial-term: imonomial-term(m), 
cand: A c∧ B, 
nequal: a ≠ b ∈ T , 
list_ind: list_ind, 
imonomial-le: imonomial-le(m1;m2), 
l_member: (x ∈ l)
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
no_repeats_wf, 
list_wf, 
iPolynomial_wf, 
list-cases, 
deq_member_nil_lemma, 
istype-void, 
map_nil_lemma, 
istype-int, 
nil_wf, 
product_subtype_list, 
colength-cons-not-zero, 
nat_wf, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
sq_stable__le, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
deq_member_cons_lemma, 
map_cons_lemma, 
cons_wf, 
le_weakening2, 
filter-bfalse, 
subtype_rel_list, 
iMonomial_wf, 
top_wf, 
null_nil_lemma, 
int_dot_nil_left_lemma, 
int_dot_cons_lemma, 
int_term_value_wf, 
ipolynomial-term_wf, 
filter_wf5, 
l_member_wf, 
bor_wf, 
list-deq_wf1, 
int-deq_wf, 
deq-member_wf, 
list-deq_wf, 
poly-coeff-of_wf, 
list_accum_wf, 
integer-dot-product_wf, 
linearization_wf, 
map_wf, 
equal_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
subtype_rel_self, 
iff_weakening_equal, 
no_repeats_cons, 
filter_nil_lemma, 
filter_cons_lemma, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
testxxx_lemma, 
list_subtype_base, 
assert_wf, 
imonomial-term_wf, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
ipolynomial-term-cons-value, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
int_seg_wf, 
imonomial-less_wf, 
length_of_cons_lemma, 
length_wf, 
select_wf, 
non_neg_length, 
length_wf_nat, 
list_ind_wf, 
intlex_wf, 
mul-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-add, 
minus-one-mul, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
add-zero, 
not-lt-2, 
omega-shadow, 
mul-distributes, 
mul-associates, 
minus-one-mul-top, 
int_seg_properties, 
decidable__lt, 
list_ind_nil_lemma, 
assert-list-deq, 
iff_weakening_uiff, 
equal-wf-base-T, 
less_than_transitivity2, 
filter_is_nil, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
condition-implies-le, 
le-add-cancel2, 
le-add-cancel, 
select_cons_tl, 
add-subtract-cancel, 
list_ind_cons_lemma, 
intlex-reflexive, 
btrue_wf, 
int_nzero_properties, 
itermConstant_wf, 
list_accum_nil_lemma, 
int_term_wf, 
list_accum_cons_lemma, 
itermMultiply_wf, 
itermVar_wf, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
mul-swap, 
intlex-antisym, 
not-equal-2, 
intlex-total, 
l_all_wf_nil, 
l_all_wf, 
add_nat_plus, 
iff_imp_equal_bool, 
select-cons-tl, 
not-equal-implies-less, 
filter_trivial, 
istype-top
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
Error :functionIsType, 
because_Cache, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :equalityIsType1, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
instantiate, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
applyEquality, 
minusEquality, 
Error :equalityIsType4, 
addEquality, 
functionExtensionality, 
Error :setIsType, 
multiplyEquality, 
universeEquality, 
equalityElimination, 
Error :dependent_pairFormation_alt, 
independent_pairEquality, 
setEquality, 
sqequalIntensionalEquality, 
Error :productIsType, 
hyp_replacement, 
productEquality
Latex:
\mforall{}[L:\mBbbZ{}  List  List].  \mforall{}[p:iPolynomial()].
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
        (int\_term\_value(f;ipolynomial-term(p))
        =  linearization(p;L)  \mcdot{}  map(\mlambda{}vs.accumulate  (with  value  x  and  list  item  v):
                                                                        x  *  (f  v)
                                                                      over  list:
                                                                          vs
                                                                      with  starting  value:
                                                                        1);L)) 
    supposing  (\mforall{}m\mmember{}p.(snd(m)  \mmember{}  L))  \mwedge{}  no\_repeats(\mBbbZ{}  List;L)
Date html generated:
2019_06_20-PM-00_47_26
Last ObjectModification:
2018_10_04-PM-02_39_59
Theory : omega
Home
Index