Nuprl Lemma : rev-append-property
∀[as,bs:Top].  (rev(as) + bs ~ rev(as) + [] @ bs)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
append: as @ bs
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
rev-append-property-top, 
list_ind_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
dependent_functionElimination, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[as,bs:Top].    (rev(as)  +  bs  \msim{}  rev(as)  +  []  @  bs)
Date html generated:
2016_05_14-AM-06_55_37
Last ObjectModification:
2015_12_26-PM-01_15_18
Theory : omega
Home
Index