Nuprl Lemma : rev-append-property

[as,bs:Top].  (rev(as) bs rev(as) [] bs)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs append: as bs nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  rev-append-property-top list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality sqequalRule dependent_functionElimination hypothesis sqequalAxiom because_Cache

Latex:
\mforall{}[as,bs:Top].    (rev(as)  +  bs  \msim{}  rev(as)  +  []  @  bs)



Date html generated: 2016_05_14-AM-06_55_37
Last ObjectModification: 2015_12_26-PM-01_15_18

Theory : omega


Home Index