Nuprl Lemma : per-all_wf
∀[A:Type]. ∀[B:type-function{i:l}(A)].  (per-all(A;a.B[a]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
per-all: per-all(A;a.B[a])
, 
type-function: type-function{i:l}(A)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
per-all: per-all(A;a.B[a])
, 
so_apply: x[s]
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
per-function_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
sqequalHypSubstitution, 
hypothesis
Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].    (per-all(A;a.B[a])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_54_11
Last ObjectModification:
2015_12_26-AM-10_40_49
Theory : per!type
Home
Index