Nuprl Lemma : per-all_wf

[A:Type]. ∀[B:type-function{i:l}(A)].  (per-all(A;a.B[a]) ∈ ℙ)


Proof




Definitions occuring in Statement :  per-all: per-all(A;a.B[a]) type-function: type-function{i:l}(A) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  per-all: per-all(A;a.B[a]) so_apply: x[s] prop: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  per-function_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep sqequalHypSubstitution hypothesis

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].    (per-all(A;a.B[a])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_54_11
Last ObjectModification: 2015_12_26-AM-10_40_49

Theory : per!type


Home Index