Nuprl Lemma : per-set-intro

[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A].  a ∈ per-set(A;a.B[a]) supposing B[a]


Proof




Definitions occuring in Statement :  per-set: per-set(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T so_apply: x[s]
Lemmas referenced :  per-set-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation applyEquality hypothesisEquality functionEquality cumulativity universeEquality because_Cache hypothesis equalityTransitivity equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].    a  \mmember{}  per-set(A;a.B[a])  supposing  B[a]



Date html generated: 2019_06_20-AM-11_30_25
Last ObjectModification: 2018_08_24-PM-01_08_05

Theory : per!type


Home Index