Nuprl Lemma : per-set-intro
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A].  a ∈ per-set(A;a.B[a]) supposing B[a]
Proof
Definitions occuring in Statement : 
per-set: per-set(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_apply: x[s]
Lemmas referenced : 
per-set-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].    a  \mmember{}  per-set(A;a.B[a])  supposing  B[a]
Date html generated:
2019_06_20-AM-11_30_25
Last ObjectModification:
2018_08_24-PM-01_08_05
Theory : per!type
Home
Index