Nuprl Lemma : per-set-equality
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[a1,a2:A].  (a1 = a2 ∈ per-set(A;a.B[a])) supposing ((a1 = a2 ∈ A) and B[a1])
Proof
Definitions occuring in Statement : 
per-set: per-set(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
per-set: per-set(A;a.B[a])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
per-set_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
pointwiseFunctionalityForEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
pertypeMemberEquality, 
equalityTransitivity, 
independent_pairFormation, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a1,a2:A].    (a1  =  a2)  supposing  ((a1  =  a2)  and  B[a1])
Date html generated:
2019_06_20-AM-11_30_24
Last ObjectModification:
2018_08_24-PM-01_04_02
Theory : per!type
Home
Index