Nuprl Lemma : per-set-equality

[A:Type]. ∀[B:A ⟶ Type]. ∀[a1,a2:A].  (a1 a2 ∈ per-set(A;a.B[a])) supposing ((a1 a2 ∈ A) and B[a1])


Proof




Definitions occuring in Statement :  per-set: per-set(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] per-set: per-set(A;a.B[a]) and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  per-set_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation pointwiseFunctionalityForEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis pertypeMemberEquality equalityTransitivity independent_pairFormation because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a1,a2:A].    (a1  =  a2)  supposing  ((a1  =  a2)  and  B[a1])



Date html generated: 2019_06_20-AM-11_30_24
Last ObjectModification: 2018_08_24-PM-01_04_02

Theory : per!type


Home Index