Nuprl Lemma : truncate_wf
∀[X:Type]. ∀[x:X].  (|x| ∈ ⇃(X))
Proof
Definitions occuring in Statement : 
truncate: |x|
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
truncate: |x|
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_quotient, 
true_wf, 
equiv_rel_true, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :lambdaEquality_alt, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x:X].    (|x|  \mmember{}  \00D9(X))
Date html generated:
2019_06_20-PM-00_32_48
Last ObjectModification:
2018_11_16-AM-11_46_33
Theory : quot_1
Home
Index