Nuprl Lemma : truncate_wf

[X:Type]. ∀[x:X].  (|x| ∈ ⇃(X))


Proof




Definitions occuring in Statement :  truncate: |x| quotient: x,y:A//B[x; y] uall: [x:A]. B[x] true: True member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T truncate: |x| subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  subtype_quotient true_wf equiv_rel_true istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin Error :lambdaEquality_alt,  hypothesis because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:X].    (|x|  \mmember{}  \00D9(X))



Date html generated: 2019_06_20-PM-00_32_48
Last ObjectModification: 2018_11_16-AM-11_46_33

Theory : quot_1


Home Index