Nuprl Lemma : rel-restriction-implies
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  R|P => R
Proof
Definitions occuring in Statement : 
rel-restriction: R|P
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel-restriction: R|P
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    R|P  =>  R
Date html generated:
2016_05_14-AM-06_06_03
Last ObjectModification:
2015_12_26-AM-11_32_20
Theory : relations
Home
Index