Nuprl Lemma : restriction-of-transitive
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  (Trans(T;x,y.R x y) 
⇒ Trans(T;x,y.R|P x y))
Proof
Definitions occuring in Statement : 
rel-restriction: R|P
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
rel-restriction: R|P
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
trans_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (Trans(T;x,y.R  x  y)  {}\mRightarrow{}  Trans(T;x,y.R|P  x  y))
Date html generated:
2016_05_14-AM-06_06_05
Last ObjectModification:
2015_12_26-AM-11_32_26
Theory : relations
Home
Index