Step
*
of Lemma
least-equiv-cases2
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
∀a,b:A.
((least-equiv(A;R) a b)
⇒ ((a = b ∈ A) ∨ ((R a b) ∨ (R b a)) ∨ (∃c:A. (((R a c) ∨ (R c a)) ∧ (least-equiv(A;R) c b)))))
BY
{ (Auto THEN RepUR ``least-equiv transitive-reflexive-closure`` -1 THEN D -1) }
1
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. a : A
4. b : A
5. a = b ∈ A
⊢ (a = b ∈ A) ∨ ((R a b) ∨ (R b a)) ∨ (∃c:A. (((R a c) ∨ (R c a)) ∧ (least-equiv(A;R) c b)))
2
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. a : A
4. b : A
5. TC(λx,y. ((R x y) ∨ (R y x))) a b
⊢ (a = b ∈ A) ∨ ((R a b) ∨ (R b a)) ∨ (∃c:A. (((R a c) ∨ (R c a)) ∧ (least-equiv(A;R) c b)))
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[R:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}].
\mforall{}a,b:A.
((least-equiv(A;R) a b)
{}\mRightarrow{} ((a = b) \mvee{} ((R a b) \mvee{} (R b a)) \mvee{} (\mexists{}c:A. (((R a c) \mvee{} (R c a)) \mwedge{} (least-equiv(A;R) c b)))))
By
Latex:
(Auto THEN RepUR ``least-equiv transitive-reflexive-closure`` -1 THEN D -1)
Home
Index