Nuprl Lemma : least-equiv-cases2

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀a,b:A.
    ((least-equiv(A;R) b)
     ((a b ∈ A) ∨ ((R b) ∨ (R a)) ∨ (∃c:A. (((R c) ∨ (R a)) ∧ (least-equiv(A;R) b)))))


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q least-equiv: least-equiv(A;R) transitive-reflexive-closure: R^* or: P ∨ Q member: t ∈ T prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] guard: {T} infix_ap: y exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  least-equiv_wf or_wf exists_wf subtype_rel_self transitive-closure-cases equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule unionElimination thin applyEquality cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis functionEquality cumulativity universeEquality inlFormation lambdaEquality productEquality instantiate inrFormation dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a,b:A.
        ((least-equiv(A;R)  a  b)
        {}\mRightarrow{}  ((a  =  b)  \mvee{}  ((R  a  b)  \mvee{}  (R  b  a))  \mvee{}  (\mexists{}c:A.  (((R  a  c)  \mvee{}  (R  c  a))  \mwedge{}  (least-equiv(A;R)  c  b)))))



Date html generated: 2018_05_21-PM-00_52_04
Last ObjectModification: 2018_05_04-AM-09_27_23

Theory : relations2


Home Index