Step
*
of Lemma
rel_exp_functionality_wrt_iff
∀[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ]. ((∀x,y:T. (R x y
⇐⇒ Q x y))
⇒ (∀n:ℕ. ∀x,y:T. (R^n x y
⇐⇒ Q^n x y)))
BY
{ InductionOnNat }
1
.....basecase.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [Q] : T ⟶ T ⟶ ℙ
4. ∀x,y:T. (R x y
⇐⇒ Q x y)
⊢ ∀x,y:T. (R^0 x y
⇐⇒ Q^0 x y)
2
.....upcase.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [Q] : T ⟶ T ⟶ ℙ
4. ∀x,y:T. (R x y
⇐⇒ Q x y)
5. n : ℤ
6. [%2] : 0 < n
7. ∀x,y:T. (R^n - 1 x y
⇐⇒ Q^n - 1 x y)
⊢ ∀x,y:T. (R^n x y
⇐⇒ Q^n x y)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R,Q:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
((\mforall{}x,y:T. (R x y \mLeftarrow{}{}\mRightarrow{} Q x y)) {}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}x,y:T. (rel\_exp(T; R; n) x y \mLeftarrow{}{}\mRightarrow{} rel\_exp(T; Q; n) x y)))
By
Latex:
InductionOnNat
Home
Index