Nuprl Lemma : rel_exp_functionality_wrt_iff

[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R ⇐⇒ y))  (∀n:ℕ. ∀x,y:T.  (R^n ⇐⇒ Q^n y)))


Proof




Definitions occuring in Statement :  rel_exp: R^n nat: uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] rel_exp: R^n subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff cand: c∧ B infix_ap: y
Lemmas referenced :  all_wf iff_wf rel_exp_wf subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_wf eq_int_wf bool_wf equal-wf-base assert_wf equal_wf bnot_wf not_wf intformeq_wf int_formula_prop_eq_lemma exists_wf infix_ap_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality because_Cache applyEquality dependent_set_memberEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality functionEquality universeEquality baseClosed equalityTransitivity equalitySymmetry productEquality instantiate independent_functionElimination equalityElimination productElimination impliesFunctionality baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R  x  y  \mLeftarrow{}{}\mRightarrow{}  Q  x  y))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}x,y:T.    (rel\_exp(T;  R;  n)  x  y  \mLeftarrow{}{}\mRightarrow{}  rel\_exp(T;  Q;  n)  x  y)))



Date html generated: 2017_04_17-AM-09_27_45
Last ObjectModification: 2017_02_27-PM-05_28_12

Theory : relations2


Home Index