Nuprl Lemma : rel_or_idempotent
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  R ∨ R 
⇐⇒ R
Proof
Definitions occuring in Statement : 
rel_equivalent: R1 
⇐⇒ R2
, 
rel_or: R1 ∨ R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_or: R1 ∨ R2
, 
rel_equivalent: R1 
⇐⇒ R2
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
inlFormation, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    R  \mvee{}  R  \mLeftarrow{}{}\mRightarrow{}  R
Date html generated:
2016_05_14-PM-03_56_15
Last ObjectModification:
2015_12_26-PM-06_55_21
Theory : relations2
Home
Index