Nuprl Lemma : rel_plus_functionality_wrt_brle
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. ((R1 ≡>{T} R2)
⇒ (R1+ ≡>{T} R2+))
Proof
Definitions occuring in Statement :
binrel_le: E ≡>{T} E'
,
rel_plus: R+
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel_implies: R1 => R2
,
infix_ap: x f y
,
binrel_le: E ≡>{T} E'
Lemmas referenced :
rel_plus_functionality_wrt_rel_implies
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
hypothesis
Latex:
\mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. ((R1 \mequiv{}>\{T\} R2) {}\mRightarrow{} (R1\msupplus{} \mequiv{}>\{T\} R2\msupplus{}))
Date html generated:
2016_05_14-PM-03_54_58
Last ObjectModification:
2015_12_26-PM-06_55_48
Theory : relations2
Home
Index