Step
*
2
of Lemma
rel_plus_strongwellfounded
.....upcase.....
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((x R y)
⇒ f x < f y)
5. n : ℤ
6. 0 < n
7. ∀x,y:T. ((x R^n y)
⇒ f x < f y)
⊢ ∀x,y:T. ((x R^n + 1 y)
⇒ f x < f y)
BY
{ ((Auto THEN (MoveToConcl (-1)) THEN RecUnfold `rel_exp` 0 THEN SplitOnConclITE THEN Reduce 0) THENA Auto) }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((x R y)
⇒ f x < f y)
5. n : ℤ
6. 0 < n
7. ∀x,y:T. ((x R^n y)
⇒ f x < f y)
8. x : T
9. y : T
10. (n + 1) = 0 ∈ ℤ
⊢ (x = y ∈ T)
⇒ f x < f y
2
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((x R y)
⇒ f x < f y)
5. n : ℤ
6. 0 < n
7. ∀x,y:T. ((x R^n y)
⇒ f x < f y)
8. x : T
9. y : T
10. ¬((n + 1) = 0 ∈ ℤ)
⊢ (∃z:T. ((x R z) ∧ (z R^(n + 1) - 1 y)))
⇒ f x < f y
Latex:
Latex:
.....upcase.....
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. f : T {}\mrightarrow{} \mBbbN{}
4. \mforall{}x,y:T. ((x R y) {}\mRightarrow{} f x < f y)
5. n : \mBbbZ{}
6. 0 < n
7. \mforall{}x,y:T. ((x rel\_exp(T; R; n) y) {}\mRightarrow{} f x < f y)
\mvdash{} \mforall{}x,y:T. ((x rel\_exp(T; R; n + 1) y) {}\mRightarrow{} f x < f y)
By
Latex:
((Auto THEN (MoveToConcl (-1)) THEN RecUnfold `rel\_exp` 0 THEN SplitOnConclITE THEN Reduce 0)
THENA Auto
)
Home
Index