Nuprl Lemma : rel_star_functionality_wrt_brle
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  ((R1 ≡>{T} R2) 
⇒ ((R1^*) ≡>{T} (R2^*)))
Proof
Definitions occuring in Statement : 
binrel_le: E ≡>{T} E'
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
binrel_le: E ≡>{T} E'
Lemmas referenced : 
rel_star_functionality_wrt_rel_implies
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R1  \mequiv{}>\{T\}  R2)  {}\mRightarrow{}  (rel\_star(T;  R1)  \mequiv{}>\{T\}  rel\_star(T;  R2)))
Date html generated:
2016_05_14-PM-03_55_00
Last ObjectModification:
2015_12_26-PM-06_55_46
Theory : relations2
Home
Index