Nuprl Lemma : transitive-closure-minimal-ext
∀[A:Type]. ∀[R,Q:A ⟶ A ⟶ ℙ].  (R => Q 
⇒ Trans(A;x,y.x Q y) 
⇒ TC(R) => Q)
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R)
, 
rel_implies: R1 => R2
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
spreadn: spread3, 
transitive-closure-minimal
Lemmas referenced : 
transitive-closure-minimal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:Type].  \mforall{}[R,Q:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  Trans(A;x,y.x  Q  y)  {}\mRightarrow{}  TC(R)  =>  Q)
Date html generated:
2018_05_21-PM-00_51_42
Last ObjectModification:
2018_05_19-AM-06_40_14
Theory : relations2
Home
Index