Nuprl Lemma : sq_stable__sqequal
∀x,y:Base.  SqStable(x ~ y)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
squash_wf, 
base_sq, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
sqequalIntensionalEquality
Latex:
\mforall{}x,y:Base.    SqStable(x  \msim{}  y)
Date html generated:
2016_05_13-PM-03_19_56
Last ObjectModification:
2015_12_26-AM-09_09_18
Theory : sqequal_1
Home
Index