Nuprl Lemma : general-subtype-respects-equality

[A,B,C:Type].  (respects-equality(B;C)) supposing (respects-equality(A;C) and (B ⊆A))


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q respects-equality: respects-equality(S;T) all: x:A. B[x] subtype_rel: A ⊆B squash: T
Lemmas referenced :  sq_stable__respects-equality istype-base respects-equality_wf subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination Error :lambdaFormation_alt,  dependent_functionElimination applyEquality sqequalRule Error :equalityIstype,  Error :universeIsType,  sqequalBase equalitySymmetry because_Cache imageMemberEquality baseClosed imageElimination Error :inhabitedIsType,  instantiate universeEquality

Latex:
\mforall{}[A,B,C:Type].    (respects-equality(B;C))  supposing  (respects-equality(A;C)  and  (B  \msubseteq{}r  A))



Date html generated: 2019_06_20-AM-11_19_35
Last ObjectModification: 2018_11_23-PM-02_19_02

Theory : subtype_0


Home Index