Nuprl Lemma : tunion-is-image
∀[A:Type]. ∀[B:A ⟶ Type].  (⋃a:A.B[a] ~ Image((a:A × B[a]),(λp.(snd(p)))))
Proof
Definitions occuring in Statement : 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
image-type: Image(T,f)
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcup{}a:A.B[a]  \msim{}  Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(snd(p)))))
Date html generated:
2016_05_13-PM-03_19_38
Last ObjectModification:
2015_12_26-AM-09_07_43
Theory : subtype_0
Home
Index