Nuprl Lemma : tunion-is-image

[A:Type]. ∀[B:A ⟶ Type].  (⋃a:A.B[a] Image((a:A × B[a]),(λp.(snd(p)))))


Proof




Definitions occuring in Statement :  tunion: x:A.B[x] uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) image-type: Image(T,f) lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type sqequal: t
Definitions unfolded in proof :  tunion: x:A.B[x] uall: [x:A]. B[x] member: t ∈ T
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom functionEquality cumulativity hypothesisEquality universeEquality sqequalHypSubstitution isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\mcup{}a:A.B[a]  \msim{}  Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(snd(p)))))



Date html generated: 2016_05_13-PM-03_19_38
Last ObjectModification: 2015_12_26-AM-09_07_43

Theory : subtype_0


Home Index