Nuprl Lemma : subtype_by_equality
∀[A,B:Type].  ((∀x,y:Base.  ((x = y ∈ A) 
⇒ (x = y ∈ B))) 
⇒ (A ⊆r B))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
label: ...$L... t
, 
guard: {T}
, 
true: True
Lemmas referenced : 
base_wf, 
member_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
hypothesisEquality, 
sqequalRule, 
Error :functionIsType, 
extract_by_obid, 
hypothesis, 
Error :inhabitedIsType, 
Error :equalityIsType4, 
because_Cache, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
axiomEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
universeEquality, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,B:Type].    ((\mforall{}x,y:Base.    ((x  =  y)  {}\mRightarrow{}  (x  =  y)))  {}\mRightarrow{}  (A  \msubseteq{}r  B))
Date html generated:
2019_06_20-PM-00_28_09
Last ObjectModification:
2018_09_29-PM-11_18_30
Theory : subtype_1
Home
Index