Step
*
1
1
of Lemma
union-continuous-type-monotone
1. F : Type ⟶ Type
2. ∀A,B:Type. (A ≡ B
⇒ F[A] ≡ F[B])
3. A : Type
4. B : Type
5. A ⊆r B
6. x : F A@i
7. ∀[X:𝔹 ⟶ Type]. (⋃n:𝔹.F[X n] ⊆r F[⋃n:𝔹.(X n)])
8. ⋃n:𝔹.F[if n then A else B fi ] ⊆r F[⋃n:𝔹.if n then A else B fi ]
9. x = x ∈ ⋃n:𝔹.F[if n then A else B fi ]
⊢ ⋃n:𝔹.F[if n then A else B fi ] ⊆r (F B)
BY
{ Assert ⌜F[⋃n:𝔹.if n then A else B fi ] ⊆r (F B)⌝⋅ }
1
.....assertion.....
1. F : Type ⟶ Type
2. ∀A,B:Type. (A ≡ B
⇒ F[A] ≡ F[B])
3. A : Type
4. B : Type
5. A ⊆r B
6. x : F A@i
7. ∀[X:𝔹 ⟶ Type]. (⋃n:𝔹.F[X n] ⊆r F[⋃n:𝔹.(X n)])
8. ⋃n:𝔹.F[if n then A else B fi ] ⊆r F[⋃n:𝔹.if n then A else B fi ]
9. x = x ∈ ⋃n:𝔹.F[if n then A else B fi ]
⊢ F[⋃n:𝔹.if n then A else B fi ] ⊆r (F B)
2
1. F : Type ⟶ Type
2. ∀A,B:Type. (A ≡ B
⇒ F[A] ≡ F[B])
3. A : Type
4. B : Type
5. A ⊆r B
6. x : F A@i
7. ∀[X:𝔹 ⟶ Type]. (⋃n:𝔹.F[X n] ⊆r F[⋃n:𝔹.(X n)])
8. ⋃n:𝔹.F[if n then A else B fi ] ⊆r F[⋃n:𝔹.if n then A else B fi ]
9. x = x ∈ ⋃n:𝔹.F[if n then A else B fi ]
10. F[⋃n:𝔹.if n then A else B fi ] ⊆r (F B)
⊢ ⋃n:𝔹.F[if n then A else B fi ] ⊆r (F B)
Latex:
Latex:
1. F : Type {}\mrightarrow{} Type
2. \mforall{}A,B:Type. (A \mequiv{} B {}\mRightarrow{} F[A] \mequiv{} F[B])
3. A : Type
4. B : Type
5. A \msubseteq{}r B
6. x : F A@i
7. \mforall{}[X:\mBbbB{} {}\mrightarrow{} Type]. (\mcup{}n:\mBbbB{}.F[X n] \msubseteq{}r F[\mcup{}n:\mBbbB{}.(X n)])
8. \mcup{}n:\mBbbB{}.F[if n then A else B fi ] \msubseteq{}r F[\mcup{}n:\mBbbB{}.if n then A else B fi ]
9. x = x
\mvdash{} \mcup{}n:\mBbbB{}.F[if n then A else B fi ] \msubseteq{}r (F B)
By
Latex:
Assert \mkleeneopen{}F[\mcup{}n:\mBbbB{}.if n then A else B fi ] \msubseteq{}r (F B)\mkleeneclose{}\mcdot{}
Home
Index