Nuprl Lemma : tuple1_lemma
∀F:Top. (tuple(1;x.F[x]) ~ F[0])
Proof
Definitions occuring in Statement : 
tuple: tuple(n;i.F[i])
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
tuple: tuple(n;i.F[i])
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
istype-top, 
map_cons_lemma, 
istype-void, 
map_nil_lemma, 
list_ind_cons_lemma, 
null_nil_lemma, 
list_ind_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}F:Top.  (tuple(1;x.F[x])  \msim{}  F[0])
Date html generated:
2019_06_20-PM-02_03_07
Last ObjectModification:
2019_01_29-AM-10_15_23
Theory : tuples
Home
Index