Nuprl Lemma : tuple1_lemma

F:Top. (tuple(1;x.F[x]) F[0])


Proof




Definitions occuring in Statement :  tuple: tuple(n;i.F[i]) top: Top so_apply: x[s] all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] tuple: tuple(n;i.F[i]) upto: upto(n) from-upto: [n, m) lt_int: i <j ifthenelse: if then else fi  btrue: tt bfalse: ff member: t ∈ T top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  istype-top map_cons_lemma istype-void map_nil_lemma list_ind_cons_lemma null_nil_lemma list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut hypothesis introduction extract_by_obid sqequalRule callbyvalueReduce sqleReflexivity sqequalHypSubstitution dependent_functionElimination thin Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}F:Top.  (tuple(1;x.F[x])  \msim{}  F[0])



Date html generated: 2019_06_20-PM-02_03_07
Last ObjectModification: 2019_01_29-AM-10_15_23

Theory : tuples


Home Index