Nuprl Lemma : comb_for_wellfounded_wf

λA,r,z. WellFnd{i}(A;x,y.r[x;y]) ∈ A:Type ⟶ r:(A ⟶ A ⟶ ℙ) ⟶ (↓True) ⟶ ℙ'


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) prop: so_apply: x[s1;s2] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  wellfounded_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mlambda{}A,r,z.  WellFnd\{i\}(A;x,y.r[x;y])  \mmember{}  A:Type  {}\mrightarrow{}  r:(A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}'



Date html generated: 2016_05_13-PM-03_18_26
Last ObjectModification: 2015_12_26-AM-09_06_49

Theory : well_fnd


Home Index