Nuprl Lemma : comb_for_wellfounded_wf
λA,r,z. WellFnd{i}(A;x,y.r[x;y]) ∈ A:Type ⟶ r:(A ⟶ A ⟶ ℙ) ⟶ (↓True) ⟶ ℙ'
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
wellfounded_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mlambda{}A,r,z.  WellFnd\{i\}(A;x,y.r[x;y])  \mmember{}  A:Type  {}\mrightarrow{}  r:(A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}'
Date html generated:
2016_05_13-PM-03_18_26
Last ObjectModification:
2015_12_26-AM-09_06_49
Theory : well_fnd
Home
Index