Nuprl Lemma : wellfounded_wf

[A:Type]. ∀[r:A ⟶ A ⟶ ℙ].  (WellFnd{i}(A;x,y.r[x;y]) ∈ ℙ')


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T wellfounded: WellFnd{i}(A;x,y.R[x; y]) prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s1;s2] so_apply: x[s] guard: {T}
Lemmas referenced :  uall_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[r:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(A;x,y.r[x;y])  \mmember{}  \mBbbP{}')



Date html generated: 2019_06_20-AM-11_19_11
Last ObjectModification: 2018_09_26-AM-10_41_44

Theory : well_fnd


Home Index