Nuprl Lemma : wellfounded_wf
∀[A:Type]. ∀[r:A ⟶ A ⟶ ℙ].  (WellFnd{i}(A;x,y.r[x;y]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
uall_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[r:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(A;x,y.r[x;y])  \mmember{}  \mBbbP{}')
Date html generated:
2019_06_20-AM-11_19_11
Last ObjectModification:
2018_09_26-AM-10_41_44
Theory : well_fnd
Home
Index