Step
*
1
1
of Lemma
bag-combine-map
1. A : Type
2. B : Type
3. C : Type
4. g : B ⟶ bag(C)
5. f : A ⟶ B
6. u : A
7. v : A List
8. ⋃x∈bag-map(f;v).g[x] = ⋃x∈v.g[f x] ∈ bag(C)
⊢ ⋃x∈{f u} + bag-map(f;v).g[x] = ⋃x∈{u} + v.g[f x] ∈ bag(C)
BY
{ (RWO "bag-combine-append-left" 0 THEN Auto THEN Auto) }
1
1. A : Type
2. B : Type
3. C : Type
4. g : B ⟶ bag(C)
5. f : A ⟶ B
6. u : A
7. v : A List
8. ⋃x∈bag-map(f;v).g[x] = ⋃x∈v.g[f x] ∈ bag(C)
⊢ (⋃x∈{f u}.g[x] + ⋃x∈bag-map(f;v).g[x]) = (⋃x∈{u}.g[f x] + ⋃x∈v.g[f x]) ∈ bag(C)
Latex:
Latex:
1. A : Type
2. B : Type
3. C : Type
4. g : B {}\mrightarrow{} bag(C)
5. f : A {}\mrightarrow{} B
6. u : A
7. v : A List
8. \mcup{}x\mmember{}bag-map(f;v).g[x] = \mcup{}x\mmember{}v.g[f x]
\mvdash{} \mcup{}x\mmember{}\{f u\} + bag-map(f;v).g[x] = \mcup{}x\mmember{}\{u\} + v.g[f x]
By
Latex:
(RWO "bag-combine-append-left" 0 THEN Auto THEN Auto)
Home
Index