Nuprl Lemma : bag-combine-map

[A,B,C:Type]. ∀[g:B ⟶ bag(C)]. ∀[f:A ⟶ B]. ∀[bs:bag(A)].  (⋃x∈bag-map(f;bs).g[x] = ⋃x∈bs.g[f x] ∈ bag(C))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind bag-map: bag-map(f;bs) map: map(f;as) nil: [] it: prop: top: Top single-bag: {x} bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag_wf list_wf quotient-member-eq permutation_wf permutation-equiv list_induction equal_wf bag-combine_wf bag-map_wf list-subtype-bag nil_wf equal-wf-base map_cons_lemma list_ind_cons_lemma list_ind_nil_lemma single-bag_wf squash_wf true_wf bag-combine-append-left iff_weakening_equal bag-append_wf bag-combine-unit-left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination functionExtensionality applyEquality voidEquality voidElimination hyp_replacement applyLambdaEquality productEquality isect_memberEquality axiomEquality functionEquality equalityUniverse levelHypothesis natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:B  {}\mrightarrow{}  bag(C)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[bs:bag(A)].    (\mcup{}x\mmember{}bag-map(f;bs).g[x]  =  \mcup{}x\mmember{}bs.g[f  x])



Date html generated: 2017_10_01-AM-08_47_37
Last ObjectModification: 2017_07_26-PM-04_32_03

Theory : bags


Home Index