Nuprl Lemma : bag-filter-append
∀[p,as,bs:Top]. ([x∈as + bs|p[x]] ~ [x∈as|p[x]] + [x∈bs|p[x]])
Proof
Definitions occuring in Statement :
bag-filter: [x∈b|p[x]]
,
bag-append: as + bs
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bag-filter: [x∈b|p[x]]
,
bag-append: as + bs
,
top: Top
Lemmas referenced :
filter_append_sq,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesisEquality,
hypothesis,
sqequalAxiom,
sqequalRule,
because_Cache
Latex:
\mforall{}[p,as,bs:Top]. ([x\mmember{}as + bs|p[x]] \msim{} [x\mmember{}as|p[x]] + [x\mmember{}bs|p[x]])
Date html generated:
2016_05_15-PM-02_23_09
Last ObjectModification:
2015_12_27-AM-09_54_23
Theory : bags
Home
Index