Nuprl Lemma : bag-filter-append

[p,as,bs:Top].  ([x∈as bs|p[x]] [x∈as|p[x]] [x∈bs|p[x]])


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag-append: as bs uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-filter: [x∈b|p[x]] bag-append: as bs top: Top
Lemmas referenced :  filter_append_sq top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis sqequalAxiom sqequalRule because_Cache

Latex:
\mforall{}[p,as,bs:Top].    ([x\mmember{}as  +  bs|p[x]]  \msim{}  [x\mmember{}as|p[x]]  +  [x\mmember{}bs|p[x]])



Date html generated: 2016_05_15-PM-02_23_09
Last ObjectModification: 2015_12_27-AM-09_54_23

Theory : bags


Home Index