Step * 1 of Lemma bag-filter-union


1. Type
2. T ⟶ 𝔹
3. as bag(T) List
4. bs bag(T) List
5. permutation(bag(T);as;bs)
⊢ [x∈bag-union(as)|p[x]] bag-union(bag-map(λb.[x∈b|p[x]];bs)) ∈ bag({x:T| ↑p[x]} )
BY
Subst ⌜bag-union(bag-map(λb.[x∈b|p[x]];bs)) [x∈bag-union(bs)|p[x]]⌝ 0⋅ }

1
.....equality..... 
1. Type
2. T ⟶ 𝔹
3. as bag(T) List
4. bs bag(T) List
5. permutation(bag(T);as;bs)
⊢ bag-union(bag-map(λb.[x∈b|p[x]];bs)) [x∈bag-union(bs)|p[x]]

2
1. Type
2. T ⟶ 𝔹
3. as bag(T) List
4. bs bag(T) List
5. permutation(bag(T);as;bs)
⊢ [x∈bag-union(as)|p[x]] [x∈bag-union(bs)|p[x]] ∈ bag({x:T| ↑p[x]} )


Latex:


Latex:

1.  T  :  Type
2.  p  :  T  {}\mrightarrow{}  \mBbbB{}
3.  as  :  bag(T)  List
4.  bs  :  bag(T)  List
5.  permutation(bag(T);as;bs)
\mvdash{}  [x\mmember{}bag-union(as)|p[x]]  =  bag-union(bag-map(\mlambda{}b.[x\mmember{}b|p[x]];bs))


By


Latex:
Subst  \mkleeneopen{}bag-union(bag-map(\mlambda{}b.[x\mmember{}b|p[x]];bs))  \msim{}  [x\mmember{}bag-union(bs)|p[x]]\mkleeneclose{}  0\mcdot{}




Home Index