Nuprl Lemma : bag-filter-union

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bbs:bag(bag(T))].
  ([x∈bag-union(bbs)|p[x]] bag-union(bag-map(λb.[x∈b|p[x]];bbs)) ∈ bag({x:T| ↑p[x]} ))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) so_apply: x[s] prop: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q subtype_rel: A ⊆B uimplies: supposing a bag-union: bag-union(bbs) bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) concat: concat(ll) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  bag_wf assert_wf list_wf permutation_wf equal_wf equal-wf-base bool_wf subtype_rel_list top_wf bag-subtype-list nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma reduce_nil_lemma filter_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma reduce_cons_lemma filter_append_sq bag-filter_wf squash_wf true_wf bag-union_wf quotient-member-eq permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin setEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename dependent_functionElimination independent_functionElimination productEquality isect_memberEquality axiomEquality functionEquality independent_isectElimination setElimination intWeakElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll sqequalAxiom unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bbs:bag(bag(T))].
    ([x\mmember{}bag-union(bbs)|p[x]]  =  bag-union(bag-map(\mlambda{}b.[x\mmember{}b|p[x]];bbs)))



Date html generated: 2017_10_01-AM-08_46_38
Last ObjectModification: 2017_07_26-PM-04_31_22

Theory : bags


Home Index