Step * 2 2 of Lemma unordered-combination_functionality


1. [A] Type
2. [B] Type
3. : ℕ
4. : ℕ
5. A ⟶ B
6. Bij(A;B;f)
7. m ∈ ℤ
8. ∀[A,B:Type].
     ∀f:A ⟶ B. (Inj(A;B;f)  (∀n:ℕ. ∀b:UnorderedCombination(n;A).  (bag-map(f;b) ∈ UnorderedCombination(n;B))))
9. ∀b:UnorderedCombination(n;A). (bag-map(f;b) ∈ UnorderedCombination(n;B))
10. B ⟶ A
11. ∀b:B. ((f (g b)) b ∈ B)
12. ∀a:A. ((g (f a)) a ∈ A)
13. ∀b:UnorderedCombination(n;B). (bag-map(g;b) ∈ UnorderedCombination(n;A))
⊢ UnorderedCombination(n;A) UnorderedCombination(n;B)
BY
((With ⌜λb.bag-map(f;b)⌝ (D 0)⋅ THEN Auto)⋅ THEN RepeatFor (D 0) THEN Reduce THEN Auto) }

1
1. Type
2. Type
3. : ℕ
4. : ℕ
5. A ⟶ B
6. Bij(A;B;f)
7. m ∈ ℤ
8. ∀[A,B:Type].
     ∀f:A ⟶ B. (Inj(A;B;f)  (∀n:ℕ. ∀b:UnorderedCombination(n;A).  (bag-map(f;b) ∈ UnorderedCombination(n;B))))
9. ∀b:UnorderedCombination(n;A). (bag-map(f;b) ∈ UnorderedCombination(n;B))
10. B ⟶ A
11. ∀b:B. ((f (g b)) b ∈ B)
12. ∀a:A. ((g (f a)) a ∈ A)
13. ∀b:UnorderedCombination(n;B). (bag-map(g;b) ∈ UnorderedCombination(n;A))
14. a1 UnorderedCombination(n;A)
15. a2 UnorderedCombination(n;A)
16. bag-map(f;a1) bag-map(f;a2) ∈ UnorderedCombination(n;B)
⊢ a1 a2 ∈ UnorderedCombination(n;A)

2
1. [A] Type
2. [B] Type
3. : ℕ
4. : ℕ
5. A ⟶ B
6. Bij(A;B;f)
7. m ∈ ℤ
8. ∀[A,B:Type].
     ∀f:A ⟶ B. (Inj(A;B;f)  (∀n:ℕ. ∀b:UnorderedCombination(n;A).  (bag-map(f;b) ∈ UnorderedCombination(n;B))))
9. ∀b:UnorderedCombination(n;A). (bag-map(f;b) ∈ UnorderedCombination(n;B))
10. B ⟶ A
11. ∀b:B. ((f (g b)) b ∈ B)
12. ∀a:A. ((g (f a)) a ∈ A)
13. ∀b:UnorderedCombination(n;B). (bag-map(g;b) ∈ UnorderedCombination(n;A))
14. UnorderedCombination(n;B)
⊢ ∃a:UnorderedCombination(n;A). (bag-map(f;a) b ∈ UnorderedCombination(n;B))


Latex:


Latex:

1.  [A]  :  Type
2.  [B]  :  Type
3.  n  :  \mBbbN{}
4.  m  :  \mBbbN{}
5.  f  :  A  {}\mrightarrow{}  B
6.  Bij(A;B;f)
7.  n  =  m
8.  \mforall{}[A,B:Type].
          \mforall{}f:A  {}\mrightarrow{}  B
              (Inj(A;B;f)
              {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}b:UnorderedCombination(n;A).    (bag-map(f;b)  \mmember{}  UnorderedCombination(n;B))))
9.  \mforall{}b:UnorderedCombination(n;A).  (bag-map(f;b)  \mmember{}  UnorderedCombination(n;B))
10.  g  :  B  {}\mrightarrow{}  A
11.  \mforall{}b:B.  ((f  (g  b))  =  b)
12.  \mforall{}a:A.  ((g  (f  a))  =  a)
13.  \mforall{}b:UnorderedCombination(n;B).  (bag-map(g;b)  \mmember{}  UnorderedCombination(n;A))
\mvdash{}  UnorderedCombination(n;A)  \msim{}  UnorderedCombination(n;B)


By


Latex:
((With  \mkleeneopen{}\mlambda{}b.bag-map(f;b)\mkleeneclose{}  (D  0)\mcdot{}  THEN  Auto)\mcdot{}  THEN  RepeatFor  2  (D  0)  THEN  Reduce  0  THEN  Auto)




Home Index