Nuprl Lemma : unordered-combination_functionality

[A,B:Type].  ∀n,m:ℕ.  (A  UnorderedCombination(n;A) UnorderedCombination(m;B) supposing m ∈ ℤ)


Proof




Definitions occuring in Statement :  unordered-combination: UnorderedCombination(n;T) equipollent: B nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T equipollent: B exists: x:A. B[x] prop: nat: unordered-combination: UnorderedCombination(n;T) and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) top: Top subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} biject: Bij(A;B;f) inject: Inj(A;B;f) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q surject: Surj(A;B;f) compose: g bag-map: bag-map(f;bs)
Lemmas referenced :  equal_wf equipollent_wf nat_wf bag-map_wf bag-map-no-repeats bag-size-map bag-no-repeats_wf bag-size_wf unordered-combination_wf inject_wf subtype_base_sq int_subtype_base biject-inverse squash_wf true_wf iff_weakening_equal biject_wf bag_wf bag-map-map bag-map-trivial map-id bag-subtype-list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename sqequalHypSubstitution productElimination extract_by_obid isectElimination intEquality setElimination hypothesisEquality cumulativity universeEquality dependent_set_memberEquality functionExtensionality applyEquality independent_isectElimination independent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality productEquality lambdaEquality functionEquality dependent_functionElimination equalityTransitivity equalitySymmetry because_Cache instantiate independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_pairFormation applyLambdaEquality hyp_replacement

Latex:
\mforall{}[A,B:Type].
    \mforall{}n,m:\mBbbN{}.    (A  \msim{}  B  {}\mRightarrow{}  UnorderedCombination(n;A)  \msim{}  UnorderedCombination(m;B)  supposing  n  =  m)



Date html generated: 2017_10_01-AM-09_05_27
Last ObjectModification: 2017_07_26-PM-04_45_40

Theory : bags


Home Index