Nuprl Lemma : unordered-combination_functionality
∀[A,B:Type].  ∀n,m:ℕ.  (A ~ B 
⇒ UnorderedCombination(n;A) ~ UnorderedCombination(m;B) supposing n = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
unordered-combination: UnorderedCombination(n;T)
, 
equipollent: A ~ B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
unordered-combination: UnorderedCombination(n;T)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
surject: Surj(A;B;f)
, 
compose: f o g
, 
bag-map: bag-map(f;bs)
Lemmas referenced : 
equal_wf, 
equipollent_wf, 
nat_wf, 
bag-map_wf, 
bag-map-no-repeats, 
bag-size-map, 
bag-no-repeats_wf, 
bag-size_wf, 
unordered-combination_wf, 
inject_wf, 
subtype_base_sq, 
int_subtype_base, 
biject-inverse, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
biject_wf, 
bag_wf, 
bag-map-map, 
bag-map-trivial, 
map-id, 
bag-subtype-list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
intEquality, 
setElimination, 
hypothesisEquality, 
cumulativity, 
universeEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
instantiate, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[A,B:Type].
    \mforall{}n,m:\mBbbN{}.    (A  \msim{}  B  {}\mRightarrow{}  UnorderedCombination(n;A)  \msim{}  UnorderedCombination(m;B)  supposing  n  =  m)
Date html generated:
2017_10_01-AM-09_05_27
Last ObjectModification:
2017_07_26-PM-04_45_40
Theory : bags
Home
Index