Nuprl Lemma : unordered-combination_wf

[T:Type]. ∀[n:ℕ].  (UnorderedCombination(n;T) ∈ Type)


Proof




Definitions occuring in Statement :  unordered-combination: UnorderedCombination(n;T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unordered-combination: UnorderedCombination(n;T) subtype_rel: A ⊆B nat: and: P ∧ Q prop:
Lemmas referenced :  bag_wf and_wf bag-no-repeats_wf equal_wf bag-size_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality applyEquality lambdaEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (UnorderedCombination(n;T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-03_11_38
Last ObjectModification: 2015_12_27-AM-09_24_10

Theory : bags


Home Index