Nuprl Lemma : unordered-combination_wf
∀[T:Type]. ∀[n:ℕ].  (UnorderedCombination(n;T) ∈ Type)
Proof
Definitions occuring in Statement : 
unordered-combination: UnorderedCombination(n;T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unordered-combination: UnorderedCombination(n;T)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
bag_wf, 
and_wf, 
bag-no-repeats_wf, 
equal_wf, 
bag-size_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (UnorderedCombination(n;T)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-03_11_38
Last ObjectModification:
2015_12_27-AM-09_24_10
Theory : bags
Home
Index