Step
*
1
of Lemma
bag-dickson-lemma
1. p : ℕ
2. [T] : Type
3. f : T ⟶ ℕp
4. Bij(T;ℕp;f)
5. A : ℕ ⟶ bag(T)
6. j : ℕ
7. i : ℕj
8. ∀k:ℕp. (#([x∈A[i]|(f x =z k)]) ≤ #([x∈A[j]|(f x =z k)]))
⊢ sub-bag(T;A[i];A[j])
BY
{ ((Assert λx,y. (f x =z f y) ∈ EqDecider(T) BY
((MemTypeCD THEN Reduce 0) THEN Auto THEN RW assert_pushdownC (-1) THEN Auto))
THEN ((InstLemma `sub-bag-iff` [⌜T⌝;⌜λx,y. (f x =z f y)⌝]⋅ THENM BHyp -1 ) THENA Auto)
THEN RepeatFor 2 (Thin (-1))) }
1
1. p : ℕ
2. [T] : Type
3. f : T ⟶ ℕp
4. Bij(T;ℕp;f)
5. A : ℕ ⟶ bag(T)
6. j : ℕ
7. i : ℕj
8. ∀k:ℕp. (#([x∈A[i]|(f x =z k)]) ≤ #([x∈A[j]|(f x =z k)]))
⊢ ∀x:T. ((#x in A[i]) ≤ (#x in A[j]))
Latex:
Latex:
1. p : \mBbbN{}
2. [T] : Type
3. f : T {}\mrightarrow{} \mBbbN{}p
4. Bij(T;\mBbbN{}p;f)
5. A : \mBbbN{} {}\mrightarrow{} bag(T)
6. j : \mBbbN{}
7. i : \mBbbN{}j
8. \mforall{}k:\mBbbN{}p. (\#([x\mmember{}A[i]|(f x =\msubz{} k)]) \mleq{} \#([x\mmember{}A[j]|(f x =\msubz{} k)]))
\mvdash{} sub-bag(T;A[i];A[j])
By
Latex:
((Assert \mlambda{}x,y. (f x =\msubz{} f y) \mmember{} EqDecider(T) BY
((MemTypeCD THEN Reduce 0) THEN Auto THEN RW assert\_pushdownC (-1) THEN Auto))
THEN ((InstLemma `sub-bag-iff` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}\mlambda{}x,y. (f x =\msubz{} f y)\mkleeneclose{}]\mcdot{} THENM BHyp -1 ) THENA Auto)
THEN RepeatFor 2 (Thin (-1)))
Home
Index