Step
*
2
1
1
1
of Lemma
bag-drop-append
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀bs:bag(T). ((bs = ({x} + bag-drop(eq;bs;x)) ∈ bag(T)) ∨ ((¬x ↓∈ bs) ∧ (bs = bag-drop(eq;bs;x) ∈ bag(T))))
5. bs : bag(T)
6. cs : bag(T)
7. (bs + cs) = bag-drop(eq;bs + cs;x) ∈ bag(T)
8. ¬((#x in bs) = 0 ∈ ℕ)
⊢ x ↓∈ bs
BY
{ (InstLemma `bag-member-count` [⌜T⌝;⌜eq⌝;⌜x⌝;⌜bs⌝]⋅ THENA Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀bs:bag(T). ((bs = ({x} + bag-drop(eq;bs;x)) ∈ bag(T)) ∨ ((¬x ↓∈ bs) ∧ (bs = bag-drop(eq;bs;x) ∈ bag(T))))
5. bs : bag(T)
6. cs : bag(T)
7. (bs + cs) = bag-drop(eq;bs + cs;x) ∈ bag(T)
8. ¬((#x in bs) = 0 ∈ ℕ)
9. uiff(x ↓∈ bs;1 ≤ (#x in bs))
⊢ x ↓∈ bs
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. \mforall{}bs:bag(T). ((bs = (\{x\} + bag-drop(eq;bs;x))) \mvee{} ((\mneg{}x \mdownarrow{}\mmember{} bs) \mwedge{} (bs = bag-drop(eq;bs;x))))
5. bs : bag(T)
6. cs : bag(T)
7. (bs + cs) = bag-drop(eq;bs + cs;x)
8. \mneg{}((\#x in bs) = 0)
\mvdash{} x \mdownarrow{}\mmember{} bs
By
Latex:
(InstLemma `bag-member-count` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}bs\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index