Nuprl Lemma : bag-drop-append
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs,cs:bag(T)].
(bag-drop(eq;bs + cs;x) = if ((#x in bs) =z 0) then bs + bag-drop(eq;cs;x) else bag-drop(eq;bs;x) + cs fi ∈ bag(T))
Proof
Definitions occuring in Statement :
bag-drop: bag-drop(eq;bs;a)
,
bag-count: (#x in bs)
,
bag-append: as + bs
,
bag: bag(T)
,
deq: EqDecider(T)
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
squash: ↓T
,
prop: ℙ
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
sq_or: a ↓∨ b
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
nequal: a ≠ b ∈ T
,
decidable: Dec(P)
,
ge: i ≥ j
,
eq_int: (i =z j)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
bag-drop-property,
bag-append_wf,
bag_wf,
bag-append-cancel,
single-bag_wf,
bag-drop_wf,
ifthenelse_wf,
eq_int_wf,
bag-count_wf,
nat_wf,
bag-member_wf,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal,
bag-member-append,
bag-member-single,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
bag-member-count,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
bag-append-assoc-comm,
bag-append-assoc2,
decidable__le,
nat_properties,
intformnot_wf,
int_formula_prop_not_lemma,
set_subtype_base,
le_wf,
int_subtype_base,
decidable__equal_nat,
false_wf,
decidable__equal_int,
equal-wf-T-base
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
unionElimination,
productElimination,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
universeEquality,
equalityTransitivity,
equalitySymmetry,
applyEquality,
lambdaEquality,
setElimination,
rename,
natural_numberEquality,
independent_isectElimination,
imageElimination,
imageMemberEquality,
baseClosed,
instantiate,
independent_functionElimination,
inlFormation,
lambdaFormation,
equalityElimination,
dependent_pairFormation,
promote_hyp,
cumulativity,
voidElimination,
approximateComputation,
int_eqEquality,
intEquality,
voidEquality,
independent_pairFormation,
applyLambdaEquality,
dependent_set_memberEquality,
inrFormation
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[x:T]. \mforall{}[bs,cs:bag(T)].
(bag-drop(eq;bs + cs;x)
= if ((\#x in bs) =\msubz{} 0) then bs + bag-drop(eq;cs;x) else bag-drop(eq;bs;x) + cs fi )
Date html generated:
2018_05_21-PM-09_48_30
Last ObjectModification:
2018_05_19-PM-04_20_23
Theory : bags_2
Home
Index