Nuprl Lemma : bag-drop_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[a:T].  (bag-drop(eq;bs;a) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-drop: bag-drop(eq;bs;a) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-drop: bag-drop(eq;bs;a) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  bag-remove1_wf bag_wf unit_wf2 equal_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis unionEquality lambdaFormation equalityTransitivity equalitySymmetry unionElimination dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[a:T].    (bag-drop(eq;bs;a)  \mmember{}  bag(T))



Date html generated: 2019_10_16-AM-11_31_16
Last ObjectModification: 2018_08_21-PM-01_59_14

Theory : bags_2


Home Index