Nuprl Lemma : bag-drop_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[a:T].  (bag-drop(eq;bs;a) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-drop: bag-drop(eq;bs;a)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-drop: bag-drop(eq;bs;a)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
bag-remove1_wf, 
bag_wf, 
unit_wf2, 
equal_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[a:T].    (bag-drop(eq;bs;a)  \mmember{}  bag(T))
Date html generated:
2019_10_16-AM-11_31_16
Last ObjectModification:
2018_08_21-PM-01_59_14
Theory : bags_2
Home
Index