Step
*
1
4
of Lemma
bag-partitions-assoc
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. bs : bag(T)
5. proddeq(bag-deq(eq);bag-deq(eq)) ∈ EqDecider(bag(T) × bag(T))
6. proddeq(bag-deq(eq);proddeq(bag-deq(eq);bag-deq(eq))) ∈ EqDecider(bag(T) × bag(T) × bag(T))
7. x : bag(T) × bag(T) × bag(T)
8. x ↓∈ bag-map(λ2p.<fst(snd(p)), snd(snd(p)), fst(p)>⋃x∈bag-partitions(eq;bs).bag-map(λy.<snd(x), y>bag-partitions(eq\000C;fst(x))))
⊢ x ↓∈ ⋃x∈bag-partitions(eq;bs).bag-map(λy.<fst(x), y>bag-partitions(eq;snd(x)))
BY
{ BagMemberD 0 }
1
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. bs : bag(T)
5. proddeq(bag-deq(eq);bag-deq(eq)) ∈ EqDecider(bag(T) × bag(T))
6. proddeq(bag-deq(eq);proddeq(bag-deq(eq);bag-deq(eq))) ∈ EqDecider(bag(T) × bag(T) × bag(T))
7. x : bag(T) × bag(T) × bag(T)
8. x ↓∈ bag-map(λ2p.<fst(snd(p)), snd(snd(p)), fst(p)>⋃x∈bag-partitions(eq;bs).bag-map(λy.<snd(x), y>bag-partitions(eq\000C;fst(x))))
⊢ ↓∃x1:bag(T) × bag(T). (x1 ↓∈ bag-partitions(eq;bs) ∧ x ↓∈ bag-map(λy.<fst(x1), y>bag-partitions(eq;snd(x1))))
Latex:
Latex:
1.  T  :  Type
2.  valueall-type(T)
3.  eq  :  EqDecider(T)
4.  bs  :  bag(T)
5.  proddeq(bag-deq(eq);bag-deq(eq))  \mmember{}  EqDecider(bag(T)  \mtimes{}  bag(T))
6.  proddeq(bag-deq(eq);proddeq(bag-deq(eq);bag-deq(eq)))  \mmember{}  EqDecider(bag(T)  \mtimes{}  bag(T)  \mtimes{}  bag(T))
7.  x  :  bag(T)  \mtimes{}  bag(T)  \mtimes{}  bag(T)
8.  x  \mdownarrow{}\mmember{}  bag-map(\mlambda{}\msubtwo{}p.<fst(snd(p)),  snd(snd(p)),  fst(p)>
                \mcup{}x\mmember{}bag-partitions(eq;bs).bag-map(\mlambda{}y.<snd(x),  y>bag-partitions(eq;fst(x))))
\mvdash{}  x  \mdownarrow{}\mmember{}  \mcup{}x\mmember{}bag-partitions(eq;bs).bag-map(\mlambda{}y.<fst(x),  y>bag-partitions(eq;snd(x)))
By
Latex:
BagMemberD  0
Home
Index