Step
*
1
of Lemma
equipollent-choose
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : ℕ
4. m ≤ n
5. m = 0 ∈ ℤ
⊢ UnorderedCombination(m;ℕn) ~ ℕ1
BY
{ TACTIC:(HypSubst' (-1) 0
THEN Unfold `unordered-combination` 0
THEN BLemma `equipollent-one-iff`
THEN Auto
THEN With ⌜{}⌝ (D 0)⋅
THEN Auto) }
1
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : ℕ
4. m ≤ n
5. m = 0 ∈ ℤ
6. x : {b:bag(ℕn)| bag-no-repeats(ℕn;b) ∧ (#(b) = 0 ∈ ℤ)}
⊢ x = {} ∈ {b:bag(ℕn)| bag-no-repeats(ℕn;b) ∧ (#(b) = 0 ∈ ℤ)}
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}n:\mBbbN{}n. \mforall{}m:\mBbbN{}. ((m \mleq{} n) {}\mRightarrow{} UnorderedCombination(m;\mBbbN{}n) \msim{} \mBbbN{}choose(n;m))
3. m : \mBbbN{}
4. m \mleq{} n
5. m = 0
\mvdash{} UnorderedCombination(m;\mBbbN{}n) \msim{} \mBbbN{}1
By
Latex:
TACTIC:(HypSubst' (-1) 0
THEN Unfold `unordered-combination` 0
THEN BLemma `equipollent-one-iff`
THEN Auto
THEN With \mkleeneopen{}\{\}\mkleeneclose{} (D 0)\mcdot{}
THEN Auto)
Home
Index