Nuprl Lemma : equipollent-choose

n,m:ℕ.  ((m ≤ n)  UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))


Proof




Definitions occuring in Statement :  unordered-combination: UnorderedCombination(n;T) equipollent: B int_seg: {i..j-} nat: le: A ≤ B all: x:A. B[x] implies:  Q natural_number: $n choose: choose(n;i)
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) nat: choose: choose(n;i) ycomb: Y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bor: p ∨bq ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) ge: i ≥  int_upper: {i...} int_iseg: {i...j} cand: c∧ B unordered-combination: UnorderedCombination(n;T) iff: ⇐⇒ Q rev_implies:  Q squash: T true: True nequal: a ≠ b ∈  istype: istype(T) bag-no-repeats: bag-no-repeats(T;bs) bag-size: #(bs) bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bag-rep: bag-rep(n;x) bag-co-restrict: (b|¬x) subtract: m equipollent: B biject: Bij(A;B;f) inject: Inj(A;B;f) respects-equality: respects-equality(S;T) surject: Surj(A;B;f) bag-member: x ↓∈ bs quotient: x,y:A//B[x; y] l_member: (x ∈ l) sq_or: a ↓∨ b int-deq: IntDeq ext-eq: A ≡ B
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than subtype_rel_self eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nat_properties nequal-le-implies zero-add guard_wf all_wf nat_wf le_wf equipollent_wf unordered-combination_wf choose_wf int_seg_subtype_nat istype-nat primrec-wf2 itermAdd_wf int_term_value_add_lemma equipollent-one-iff bag_wf bag-no-repeats_wf equal-wf-base bag-size_wf empty-bag-no-repeats bag_size_empty_lemma equal_wf squash_wf true_wf istype-universe iff_weakening_equal empty-bag_wf bag-size-zero upto_wf list-subtype-bag no_repeats_upto list_subtype_base lelt_wf no_repeats_wf length_upto quotient-member-eq list_wf permutation_wf permutation-equiv permutation-when-no_repeats decidable__l_member decidable__equal_int_seg l_member_wf member_upto2 int_upper_properties equal-wf-T-base equipollent-split decidable__squash not_wf length_wf equipollent-partition equipollent_same equipollent_functionality_wrt_equipollent2 union_functionality_wrt_equipollent equipollent-length equipollent_weakening_ext-eq ext-eq_weakening equipollent-add equipollent-nsub equipollent-zero bag-member_wf decidable__bag-member2 bag-rep-size-restrict int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self single-bag_wf bag-size-restrict subtype_rel_bag bag-no-repeats-count bag-member-count primrec1_lemma cons_bag_empty_lemma bag-restrict-split bag-co-restrict_wf bag-append_wf bag-settype intdeq_reduce_lemma bag-member-filter bnot_wf assert_elim bfalse_wf eq_int_eq_true btrue_neq_bfalse bag-filter-no-repeats int_seg_subtype add-is-int-iff not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 le_witness_for_triv bag-size-append bag_size_single_lemma biject_wf subtype_rel_set respects-equality-set respects-equality-bag subtype-base-respects-equality bag-append-no-repeats bag-single-no-repeats bag-no-repeats-supertype strong-subtype-set1 bag-member-single bag_to_squash_list member-permutation non_neg_length select_wf length_wf_nat bag-member-append bag-member-strong-subtype bag-co-restrict-append bag-co-restrict-rep empty_bag_append_lemma bag-filter-trivial iff_transitivity assert_wf iff_weakening_uiff assert_of_bnot istype-assert bag-no-repeats-subtype subtype_rel_list equal_functionality_wrt_subtype_rel2 no_repeats-strong-subtype subtype-respects-equality satisfiable-full-omega-tt false_wf member_wf equipollent_functionality_wrt_ext-eq-left equipollent_functionality_wrt_equipollent
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption inhabitedIsType equalityElimination equalityIstype promote_hyp cumulativity functionIsType functionEquality closedConclusion setIsType addEquality intEquality setEquality productEquality baseClosed imageElimination universeEquality imageMemberEquality sqequalBase baseApply hyp_replacement unionEquality minusEquality multiplyEquality isect_memberFormation_alt independent_pairEquality axiomEquality isectIsTypeImplies pertypeElimination inlFormation_alt computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation lambdaFormation dependent_set_memberEquality

Latex:
\mforall{}n,m:\mBbbN{}.    ((m  \mleq{}  n)  {}\mRightarrow{}  UnorderedCombination(m;\mBbbN{}n)  \msim{}  \mBbbN{}choose(n;m))



Date html generated: 2019_10_16-AM-11_33_29
Last ObjectModification: 2018_11_28-PM-11_21_57

Theory : bags_2


Home Index