Nuprl Lemma : equipollent-one-iff

[A:Type]. (A ~ ℕ⇐⇒ ∃z:A. ∀x:A. (x z ∈ A))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: rev_implies:  Q member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B guard: {T} inject: Inj(A;B;f) true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} all: x:A. B[x] surject: Surj(A;B;f) biject: Bij(A;B;f) exists: x:A. B[x] equipollent: B
Lemmas referenced :  equal-wf-base equal-wf-base-T biject_wf false_wf lelt_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equipollent_wf int_seg_wf exists_wf all_wf equal_wf
Rules used in proof :  universeEquality lambdaEquality sqequalRule hypothesis natural_numberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation independent_pairFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination computeAll voidEquality voidElimination isect_memberEquality int_eqEquality independent_isectElimination unionElimination because_Cache intEquality setEquality rename setElimination applyEquality equalitySymmetry equalityTransitivity independent_functionElimination dependent_pairFormation baseClosed imageMemberEquality introduction dependent_set_memberEquality dependent_functionElimination productElimination cumulativity

Latex:
\mforall{}[A:Type].  (A  \msim{}  \mBbbN{}1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}z:A.  \mforall{}x:A.  (x  =  z))



Date html generated: 2018_05_21-PM-00_52_47
Last ObjectModification: 2017_12_07-PM-06_30_04

Theory : equipollence!!cardinality!


Home Index