Nuprl Lemma : bag-size-restrict

[T:Type]. ∀[b:bag(T)]. ∀[eq:EqDecider(T)]. ∀[x:T].  (#((b|x)) (#x in b))


Proof




Definitions occuring in Statement :  bag-restrict: (b|x) bag-count: (#x in bs) bag-size: #(bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q bag-restrict: (b|x) deq: EqDecider(T) subtype_rel: A ⊆B sq_type: SQType(T)
Lemmas referenced :  bag_wf deq_wf nat_wf bag-filter_wf assert_wf bag-count-sqequal int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties bag-restrict_wf bag-size_wf decidable__le int_subtype_base set_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis dependent_functionElimination unionElimination hypothesisEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename setEquality intEquality natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality independent_functionElimination sqequalAxiom universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    (\#((b|x))  \msim{}  (\#x  in  b))



Date html generated: 2016_05_15-PM-08_10_20
Last ObjectModification: 2016_01_16-PM-01_27_22

Theory : bags_2


Home Index