Nuprl Lemma : bag-no-repeats-supertype
∀[T,S:Type]. ∀[bs:bag(S)].  bag-no-repeats(T;bs) supposing strong-subtype(S;T) ∧ bag-no-repeats(S;bs)
Proof
Definitions occuring in Statement : 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag: bag(T)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
bag-no-repeats: bag-no-repeats(T;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_list, 
subtype_rel_bag, 
equal_functionality_wrt_subtype_rel2, 
bag_wf, 
no_repeats-strong-subtype, 
equal_wf, 
list-subtype-bag, 
no_repeats_wf, 
strong-subtype_wf, 
squash_wf, 
exists_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
imageElimination, 
dependent_pairFormation, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productEquality, 
lambdaEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T,S:Type].  \mforall{}[bs:bag(S)].
    bag-no-repeats(T;bs)  supposing  strong-subtype(S;T)  \mwedge{}  bag-no-repeats(S;bs)
Date html generated:
2018_05_21-PM-09_53_02
Last ObjectModification:
2017_07_26-PM-06_32_15
Theory : bags_2
Home
Index