Nuprl Lemma : bag-filter-trivial

[T:Type]. ∀[p:T ⟶ 𝔹].  ∀[bs:bag(T)]. ([x∈bs|p[x]] bs ∈ bag(T)) supposing ∀x:T. (↑p[x])


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-filter: [x∈b|p[x]] bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] prop: so_lambda: λ2x.t[x] squash: T true: True l_all: (∀x∈L.P[x]) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b
Lemmas referenced :  list_wf quotient-member-eq permutation_wf permutation-equiv filter_wf5 l_member_wf equal_wf equal-wf-base bag_wf all_wf assert_wf bool_wf squash_wf true_wf filter_trivial int_seg_wf length_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination applyEquality functionExtensionality setElimination setEquality independent_functionElimination productEquality isect_memberEquality axiomEquality functionEquality universeEquality addLevel hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed levelHypothesis unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    \mforall{}[bs:bag(T)].  ([x\mmember{}bs|p[x]]  =  bs)  supposing  \mforall{}x:T.  (\muparrow{}p[x])



Date html generated: 2017_10_01-AM-08_45_23
Last ObjectModification: 2017_07_26-PM-04_30_41

Theory : bags


Home Index