Nuprl Lemma : bag-member-strong-subtype

[A,B:Type].  ∀b:bag(A). ∀x:B.  (x ↓∈  (x ∈ A)) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q squash: T exists: x:A. B[x] prop: subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B bag-member: x ↓∈ bs and: P ∧ Q bag: bag(T) quotient: x,y:A//B[x; y] guard: {T} iff: ⇐⇒ Q l_member: (x ∈ l) nat: rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  bag_to_squash_list bag-member_wf subtype_rel_bag bag_wf strong-subtype_wf member-permutation member_wf list_wf subtype_rel_list permutation_wf strong-subtype-implies select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement Error :applyLambdaEquality,  cumulativity applyEquality independent_isectElimination sqequalRule rename lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity because_Cache isect_memberEquality universeEquality pertypeElimination independent_functionElimination productEquality setElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[A,B:Type].    \mforall{}b:bag(A).  \mforall{}x:B.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (x  \mmember{}  A))  supposing  strong-subtype(A;B)



Date html generated: 2016_10_25-AM-10_26_55
Last ObjectModification: 2016_07_12-AM-06_43_11

Theory : bags


Home Index