Nuprl Lemma : bag-member-strong-subtype
∀[A,B:Type].  ∀b:bag(A). ∀x:B.  (x ↓∈ b 
⇒ (x ∈ A)) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
bag-member: x ↓∈ bs
, 
and: P ∧ Q
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
bag_to_squash_list, 
bag-member_wf, 
subtype_rel_bag, 
bag_wf, 
strong-subtype_wf, 
member-permutation, 
member_wf, 
list_wf, 
subtype_rel_list, 
permutation_wf, 
strong-subtype-implies, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
cumulativity, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
rename, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
universeEquality, 
pertypeElimination, 
independent_functionElimination, 
productEquality, 
setElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[A,B:Type].    \mforall{}b:bag(A).  \mforall{}x:B.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (x  \mmember{}  A))  supposing  strong-subtype(A;B)
Date html generated:
2016_10_25-AM-10_26_55
Last ObjectModification:
2016_07_12-AM-06_43_11
Theory : bags
Home
Index