Step
*
2
1
1
of Lemma
wfd-tree-cases
1. A : Type
2. w : wfd-tree(A)
3. ¬↑co-w-null(w)
4. wfd-subtrees(w) ∈ A ⟶ wfd-tree(A)
5. ¬↑co-w-null(w)
⊢ w = mk-wfd-tree(wfd-subtrees(w)) ∈ wfd-tree(A)
BY
{ xxxSubst' mk-wfd-tree(wfd-subtrees(w)) ~ w 0xxx }
1
.....equality..... 
1. A : Type
2. w : wfd-tree(A)
3. ¬↑co-w-null(w)
4. wfd-subtrees(w) ∈ A ⟶ wfd-tree(A)
5. ¬↑co-w-null(w)
⊢ mk-wfd-tree(wfd-subtrees(w)) ~ w
2
1. A : Type
2. w : wfd-tree(A)
3. ¬↑co-w-null(w)
4. wfd-subtrees(w) ∈ A ⟶ wfd-tree(A)
5. ¬↑co-w-null(w)
⊢ w = w ∈ wfd-tree(A)
Latex:
Latex:
1.  A  :  Type
2.  w  :  wfd-tree(A)
3.  \mneg{}\muparrow{}co-w-null(w)
4.  wfd-subtrees(w)  \mmember{}  A  {}\mrightarrow{}  wfd-tree(A)
5.  \mneg{}\muparrow{}co-w-null(w)
\mvdash{}  w  =  mk-wfd-tree(wfd-subtrees(w))
By
Latex:
xxxSubst'  mk-wfd-tree(wfd-subtrees(w))  \msim{}  w  0xxx
Home
Index