Nuprl Lemma : wfd-tree-cases
∀[A:Type]
  ∀w:wfd-tree(A). ((w = w-nil() ∈ wfd-tree(A)) ∨ ((¬↑co-w-null(w)) ∧ (w = mk-wfd-tree(wfd-subtrees(w)) ∈ wfd-tree(A))))
Proof
Definitions occuring in Statement : 
wfd-subtrees: wfd-subtrees(w)
, 
mk-wfd-tree: mk-wfd-tree(f)
, 
w-nil: w-nil()
, 
wfd-tree2: wfd-tree(A)
, 
co-w-null: co-w-null(w)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
wfd-tree2: wfd-tree(A)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
co-w-null: co-w-null(w)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
unit: Unit
, 
it: ⋅
, 
w-nil: w-nil()
, 
cand: A c∧ B
, 
wfd-subtrees: wfd-subtrees(w)
, 
mk-wfd-tree: mk-wfd-tree(f)
, 
outr: outr(x)
, 
true: True
Lemmas referenced : 
decidable__assert, 
co-w-null_wf, 
wfd-tree2_wf, 
not_wf, 
assert_wf, 
equal_wf, 
mk-wfd-tree_wf, 
w-nil_wf, 
co-w-ext, 
subtype_rel_transitivity, 
co-w_wf, 
unit_wf2, 
subtype_rel_weakening, 
true_wf, 
false_wf, 
wfd-subtrees_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
unionElimination, 
universeEquality, 
inlFormation, 
productEquality, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
because_Cache, 
unionEquality, 
functionEquality, 
independent_isectElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
inrFormation, 
independent_pairFormation, 
baseClosed, 
natural_numberEquality
Latex:
\mforall{}[A:Type].  \mforall{}w:wfd-tree(A).  ((w  =  w-nil())  \mvee{}  ((\mneg{}\muparrow{}co-w-null(w))  \mwedge{}  (w  =  mk-wfd-tree(wfd-subtrees(w)))))
Date html generated:
2018_05_21-PM-10_18_10
Last ObjectModification:
2017_07_26-PM-06_36_34
Theory : bar!induction
Home
Index