Nuprl Lemma : wfd-tree-cases

[A:Type]
  ∀w:wfd-tree(A). ((w w-nil() ∈ wfd-tree(A)) ∨ ((¬↑co-w-null(w)) ∧ (w mk-wfd-tree(wfd-subtrees(w)) ∈ wfd-tree(A))))


Proof




Definitions occuring in Statement :  wfd-subtrees: wfd-subtrees(w) mk-wfd-tree: mk-wfd-tree(f) w-nil: w-nil() wfd-tree2: wfd-tree(A) co-w-null: co-w-null(w) assert: b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T wfd-tree2: wfd-tree(A) decidable: Dec(P) or: P ∨ Q prop: and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a co-w-null: co-w-null(w) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff unit: Unit it: w-nil: w-nil() cand: c∧ B wfd-subtrees: wfd-subtrees(w) mk-wfd-tree: mk-wfd-tree(f) outr: outr(x) true: True
Lemmas referenced :  decidable__assert co-w-null_wf wfd-tree2_wf not_wf assert_wf equal_wf mk-wfd-tree_wf w-nil_wf co-w-ext subtype_rel_transitivity co-w_wf unit_wf2 subtype_rel_weakening true_wf false_wf wfd-subtrees_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination cumulativity hypothesisEquality setElimination rename hypothesis unionElimination universeEquality inlFormation productEquality functionExtensionality applyEquality independent_functionElimination voidElimination lambdaEquality because_Cache unionEquality functionEquality independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry equalityElimination inrFormation independent_pairFormation baseClosed natural_numberEquality

Latex:
\mforall{}[A:Type].  \mforall{}w:wfd-tree(A).  ((w  =  w-nil())  \mvee{}  ((\mneg{}\muparrow{}co-w-null(w))  \mwedge{}  (w  =  mk-wfd-tree(wfd-subtrees(w)))))



Date html generated: 2018_05_21-PM-10_18_10
Last ObjectModification: 2017_07_26-PM-06_36_34

Theory : bar!induction


Home Index