Nuprl Lemma : wfd-tree2_wf

[A:Type]. (wfd-tree(A) ∈ Type)


Proof




Definitions occuring in Statement :  wfd-tree2: wfd-tree(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T wfd-tree2: wfd-tree(A) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  co-w_wf all_wf nat_wf w-bars_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  (wfd-tree(A)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-10_05_51
Last ObjectModification: 2015_12_27-PM-05_50_30

Theory : bar!induction


Home Index