Nuprl Lemma : wfd-tree2_wf
∀[A:Type]. (wfd-tree(A) ∈ Type)
Proof
Definitions occuring in Statement : 
wfd-tree2: wfd-tree(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
wfd-tree2: wfd-tree(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
co-w_wf, 
all_wf, 
nat_wf, 
w-bars_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  (wfd-tree(A)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-10_05_51
Last ObjectModification:
2015_12_27-PM-05_50_30
Theory : bar!induction
Home
Index