Nuprl Lemma : mk-wfd-tree_wf
∀[A:Type]. ∀[f:A ⟶ wfd-tree(A)].  (mk-wfd-tree(f) ∈ wfd-tree(A))
Proof
Definitions occuring in Statement : 
mk-wfd-tree: mk-wfd-tree(f)
, 
wfd-tree2: wfd-tree(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-wfd-tree: mk-wfd-tree(f)
, 
subtype_rel: A ⊆r B
, 
wfd-tree2: wfd-tree(A)
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
w-bars: w-bars(w;p)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
co-w-select: w@s
, 
co-w-null: co-w-null(w)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
outr: outr(x)
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
true: True
, 
compose: f o g
, 
int_seg: {i..j-}
Lemmas referenced : 
co-w-ext, 
wfd-tree2_wf, 
unit_wf2, 
ext-eq_inversion, 
co-w_wf, 
subtype_rel_weakening, 
nat_wf, 
false_wf, 
le_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_wf, 
assert_wf, 
co-w-null_wf, 
co-w-select_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
upto_wf, 
all_wf, 
w-bars_wf, 
null-map, 
null-upto, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upto_decomp2, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
map_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
map-map, 
list_wf, 
subtract_wf, 
list_subtype_base, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
squash_wf, 
true_wf, 
add-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
inrEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
cumulativity, 
unionEquality, 
functionEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
natural_numberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
because_Cache, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
productElimination, 
axiomEquality, 
universeEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
minusEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  wfd-tree(A)].    (mk-wfd-tree(f)  \mmember{}  wfd-tree(A))
Date html generated:
2018_05_21-PM-10_18_02
Last ObjectModification:
2017_07_26-PM-06_36_32
Theory : bar!induction
Home
Index