Nuprl Lemma : mk-wfd-tree_wf

[A:Type]. ∀[f:A ⟶ wfd-tree(A)].  (mk-wfd-tree(f) ∈ wfd-tree(A))


Proof




Definitions occuring in Statement :  mk-wfd-tree: mk-wfd-tree(f) wfd-tree2: wfd-tree(A) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-wfd-tree: mk-wfd-tree(f) subtype_rel: A ⊆B wfd-tree2: wfd-tree(A) guard: {T} uimplies: supposing a all: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: w-bars: w-bars(w;p) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T so_lambda: λ2x.t[x] so_apply: x[s] co-w-select: w@s co-w-null: co-w-null(w) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bor: p ∨bq ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b outr: outr(x) nat_plus: + nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True compose: g int_seg: {i..j-}
Lemmas referenced :  co-w-ext wfd-tree2_wf unit_wf2 ext-eq_inversion co-w_wf subtype_rel_weakening nat_wf false_wf le_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf assert_wf co-w-null_wf co-w-select_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat upto_wf all_wf w-bars_wf null-map null-upto eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upto_decomp2 decidable__lt not-lt-2 not-equal-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf map_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma map-map list_wf subtract_wf list_subtype_base set_subtype_base lelt_wf int_subtype_base squash_wf true_wf add-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule inrEquality functionExtensionality applyEquality hypothesis lambdaEquality setElimination rename cumulativity unionEquality functionEquality independent_isectElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry lambdaFormation natural_numberEquality independent_pairFormation dependent_functionElimination because_Cache addEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination imageMemberEquality baseClosed independent_functionElimination productElimination axiomEquality universeEquality equalityElimination promote_hyp instantiate minusEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  wfd-tree(A)].    (mk-wfd-tree(f)  \mmember{}  wfd-tree(A))



Date html generated: 2018_05_21-PM-10_18_02
Last ObjectModification: 2017_07_26-PM-06_36_32

Theory : bar!induction


Home Index