Nuprl Lemma : mk-wfd-tree_wf
∀[A:Type]. ∀[f:A ⟶ wfd-tree(A)]. (mk-wfd-tree(f) ∈ wfd-tree(A))
Proof
Definitions occuring in Statement :
mk-wfd-tree: mk-wfd-tree(f)
,
wfd-tree2: wfd-tree(A)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
mk-wfd-tree: mk-wfd-tree(f)
,
subtype_rel: A ⊆r B
,
wfd-tree2: wfd-tree(A)
,
guard: {T}
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
w-bars: w-bars(w;p)
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
co-w-select: w@s
,
co-w-null: co-w-null(w)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
bor: p ∨bq
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
outr: outr(x)
,
nat_plus: ℕ+
,
nequal: a ≠ b ∈ T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
true: True
,
compose: f o g
,
int_seg: {i..j-}
Lemmas referenced :
co-w-ext,
wfd-tree2_wf,
unit_wf2,
ext-eq_inversion,
co-w_wf,
subtype_rel_weakening,
nat_wf,
false_wf,
le_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
equal_wf,
assert_wf,
co-w-null_wf,
co-w-select_wf,
map_wf,
int_seg_wf,
subtype_rel_dep_function,
int_seg_subtype_nat,
upto_wf,
all_wf,
w-bars_wf,
null-map,
null-upto,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
intformeq_wf,
int_formula_prop_eq_lemma,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
upto_decomp2,
decidable__lt,
not-lt-2,
not-equal-2,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
map_cons_lemma,
reduce_hd_cons_lemma,
reduce_tl_cons_lemma,
map-map,
list_wf,
subtract_wf,
list_subtype_base,
set_subtype_base,
lelt_wf,
int_subtype_base,
squash_wf,
true_wf,
add-swap
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
inrEquality,
functionExtensionality,
applyEquality,
hypothesis,
lambdaEquality,
setElimination,
rename,
cumulativity,
unionEquality,
functionEquality,
independent_isectElimination,
dependent_set_memberEquality,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
natural_numberEquality,
independent_pairFormation,
dependent_functionElimination,
because_Cache,
addEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
imageElimination,
imageMemberEquality,
baseClosed,
independent_functionElimination,
productElimination,
axiomEquality,
universeEquality,
equalityElimination,
promote_hyp,
instantiate,
minusEquality
Latex:
\mforall{}[A:Type]. \mforall{}[f:A {}\mrightarrow{} wfd-tree(A)]. (mk-wfd-tree(f) \mmember{} wfd-tree(A))
Date html generated:
2018_05_21-PM-10_18_02
Last ObjectModification:
2017_07_26-PM-06_36_32
Theory : bar!induction
Home
Index