Nuprl Lemma : wfd-subtrees_wf

[A:Type]. ∀[w:wfd-tree(A)].  wfd-subtrees(w) ∈ A ⟶ wfd-tree(A) supposing ¬↑co-w-null(w)


Proof




Definitions occuring in Statement :  wfd-subtrees: wfd-subtrees(w) wfd-tree2: wfd-tree(A) co-w-null: co-w-null(w) assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a wfd-tree2: wfd-tree(A) subtype_rel: A ⊆B guard: {T} all: x:A. B[x] implies:  Q wfd-subtrees: wfd-subtrees(w) co-w-null: co-w-null(w) isl: isl(x) outr: outr(x) assert: b ifthenelse: if then else fi  btrue: tt not: ¬A true: True false: False prop: bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] nat: bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb le: A ≤ B less_than': less_than'(a;b) ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top w-bars: w-bars(w;p) squash: T upto: upto(n) from-upto: [n, m) lt_int: i <j co-w-select: w@s nequal: a ≠ b ∈  bor: p ∨bq nat_plus: + iff: ⇐⇒ Q rev_implies:  Q subtract: m eq_int: (i =z j) compose: g cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] less_than: a < b
Lemmas referenced :  co-w-ext subtype_rel_weakening co-w_wf unit_wf2 not_wf true_wf nat_wf all_wf w-bars_wf subtype_rel_union ext-eq_inversion subtype_rel_transitivity false_wf equal_wf assert_wf co-w-null_wf wfd-tree2_wf eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat le_wf nat_properties nequal-le-implies zero-add subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int int_subtype_base map_nil_lemma co_w_select_nil_lemma intformeq_wf int_formula_prop_eq_lemma co-w-select_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat upto_wf null-map null-upto eqtt_to_assert assert_of_eq_int decidable__lt not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf map_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma map-map upto_decomp2 subtype_rel_list list_wf intformless_wf int_formula_prop_less_lemma ge_wf equal-wf-T-base colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma itermAdd_wf int_term_value_add_lemma set_subtype_base add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis cumulativity unionEquality functionEquality independent_isectElimination sqequalRule lambdaFormation unionElimination independent_functionElimination natural_numberEquality voidElimination functionExtensionality dependent_set_memberEquality lambdaEquality inrEquality because_Cache voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination axiomEquality isect_memberEquality universeEquality equalityElimination productElimination dependent_pairFormation promote_hyp instantiate hypothesis_subsumption independent_pairFormation int_eqEquality intEquality computeAll imageElimination imageMemberEquality baseClosed addEquality minusEquality intWeakElimination sqequalAxiom applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[w:wfd-tree(A)].    wfd-subtrees(w)  \mmember{}  A  {}\mrightarrow{}  wfd-tree(A)  supposing  \mneg{}\muparrow{}co-w-null(w)



Date html generated: 2018_05_21-PM-10_18_07
Last ObjectModification: 2017_07_26-PM-06_36_33

Theory : bar!induction


Home Index